This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Determination of Polystyrene-Hydrocarbon Interaction Parameters and Solubility Parameter Using Inverse Gas Chromatography

Eyup Özdemr^a; Asliosh Açlikses^a; Mehmet Coşlkun^a ^a Faulty of Science and Arts, University of FIRAT, Elazis, TURKEY

To cite this Article Özdemr, Eyup , Açlikses, Asliosh and Coşlkun, Mehmet(1992) 'Determination of Polystyrene-Hydrocarbon Interaction Parameters and Solubility Parameter Using Inverse Gas Chromatography', Journal of Macromolecular Science, Part A, 29: 1, 63 - 70

To link to this Article: DOI: 10.1080/10101329208054565 URL: http://dx.doi.org/10.1080/10101329208054565

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Determination of Polystyrene-Hydrocarbon Interaction Parameters and Solubility Parameter Using Inverse Gas Chromatography

Eyüp ÖZDEMİR, Aslışah AÇIKSES and Mehmet COŞKUN Faculty of Science and Arts, University of FIRAT, Elazığ, TURKEY

ABSTRACT

The weight fraction activity coefficients $(a_1/w_1)^{\infty}$ and Flory-Huggins X parameters have been determined by using inverse gas chromatography technique over the temperature range of 433-453 K for four hydrocarbons on polystyrene. The Hildebrand solubility parameter δ_2 of polystyrene was then calculated. The values of δ_2 obtained from $\overline{\Delta G_1^{\infty}}$ and X parameters were found to agree with literature data.

INTRODUCTION

Because of its conveince and versality, inverse gas chromatography (i.g.c) is widely used in polymer research. It provides much quantitative information on polymer solvent interactions.

Inverse gas chromatography is based on observation of retention volumes of molecular probes on the polymer which is coated onto a support. Specific retention volume V_0^{o} is calculated from the relation ¹

 $V_g^0 = [(t_r, 273.12, F)/(v.T)]$ 3/2 $[(P_i/P_0)^2 - 1]/[(P_i/P_0)^3 - 1]$ (1) where t_r is the net retention time, F is the flow rate of carrier gas at 273.12 K, w is the mass of polymer, T is the column temperature and P₁ and P₀ are the inlet and outlet pressure of carrier gas.

Copyright © 1992 by Marcel Dekker, Inc.

(4)

(5)

Flory-Huggins parameter X characterizing the interaction of probe with the polymer is determined from the following equation.

The value of B_{11} for the probe is calculated from

 $B_{11} / Y_c = 0.430 - 0.886 T_c / T - 0.694 (T_c / T)^2 - 0.0375 (T_c / T)^{4.5}$ (3) where V_c and T_c are the critical volume and temparature of the probe.

Probe vapor pressure P_1^0 is found from the Antonie equation

 $Log P_1^0 = A - B / t + C$

where P_1^{0} is the probe pressure in mmHg, t is the temperature in ${}^{0}C$; A, B and C are constants taken from the standart sources.

Solubility parameter $\pmb{\delta}_1$ of probe is calculated from the relation

 $\delta_1 = [(\Delta H_y - RT)/Y_1]^{1/2}$

where ΔH_V is the molar enthalpy of vaporization for the probe at temperature T.

Although the solubility parameter of a probe is a readily calculable quantity, the solubity parameter of polymer cannot be determined directly because most polymers cannot be vaporized without decomposing.

The Flory-Huggins X parameter is related to the solubility parameters of probe and the polymer as follows

$$X = (Y_1 / RT) (\delta_1 - \delta_2)^2$$

(6)

where δ_1 and δ_2 are the solubility parameters of probe and the polymer.

The last equation can be rearranged to $(\delta_1^2/RT) - X/Y_1 = (2\delta_2/RT)\delta_1 - (\delta_2^2/RT)$ (7)

If the left side of this equation is plotted against δ_1 , a straight line having a slope of $2\delta_2$ / RT and an intercept of δ_2^2 / RT is obtained.

The solubility parameters of polymer can also be obtained from the partial molar free energy ΔG_1^{∞} of probe at infinite dilution (above the glass transition temparature of polymer). The partial molar free energy of probe is determined from the weight fraction activity coefficient $(a_1/w_1)^{\infty}$ of probe at infinite dilution. The weight fraction activity

coefficient $(a_1/w_1)^{\infty}$ is measured from

 $\frac{\ln (a_1 / w_1)^{\circ \circ} = \ln [(273.12 . R) / (P_1^{\circ} . Y_g^{\circ} . M_1)] - [(P_1^{\circ} (B_{11} - Y_1) / RT)] - 1 \quad (8)}{\Delta G_1^{\circ \circ} = RT \ln (a_1 / w_1)^{\circ \circ}} \text{ and } (a_1 / w_1)^{\circ \circ} \text{ at infinite dilution is}$

Assuming no pressure difference with the probe in the experiments, one obtains

 $\overline{\Delta b_{\gamma}}^{\circ \circ} = Y_1 \left(\delta_{\gamma} - \delta_2 \right)^2 \tag{10}$

According to the equation 10, the plot of $(\delta_1^2 - \overline{\Delta G_1^{\infty}}/V_1)$ against δ_1 gives a straight line with a slope of $2\delta_2$ and the intercept of the straight line is $-\delta_1^2$

EXPERIMENTAL

Materials

Polystyrene (PS) having a viscosity average moleculer weight of M_V = 145000 was obtained from YARPET-TURKEY. The glass transition temperature of the polymer is 373 K.

The probes (n-hexane, n-heptane, n-nonane and n-decane) were analytical or chromatography grade solvents and were used without any purification. The following abbreviations were used for the probes:

```
n-hexane : n-C<sub>6</sub>
n-heptane : n-C<sub>7</sub>
n-nonane : n-C<sub>9</sub>
n-decane : n-C<sub>10</sub>
```

Columns

Polystyrene was dissolved in methylene chloride (CH_2Cl_2) and deposited onto an inert chromatographic support Chromosorb W by slow evaporation of methylene chloride with gentle stirring. After vacum drying for 48 h. with slight heating, the chromatographic support was packed with the aid of a mechanical vibrator into 3.25 mm i.d. copper column which is 1 m. long

Y ₀ ° cm ³ /g						
T (K)	n-C ₆	n-C7	n-Cg	n-C ₁₀		
433	1.980	1.980	5.180	6.800		
443	1.390	1.960	5.220	5.820		
453	1.190	1.690	3.730	3.600		

Table 1. Specific Retention Volumes of Probes as a Function of
Temperature (433-453 K) on Polystyrene

Table II. Probe Parameters as a Function of Temperature.

P1 ⁰ mmHg		Y ₁ cm ³ /mo) δ ₁ (cal/cm ³) ^{1/2}				2						
T (K)	n-c ₆	n-C7	n-Cg	^{n-C} 10	n-C6	n-C7	n-Cg	n-C ₁₀	^{n-c} 6	n-C7	n-Cg	n-C ₁₀
433	6739	3432	959	520	168	181	209	231	4.9	5.4	6.1	6.2
443	8053	4192	1225	680	173	185	213	234	4.6	5.2	5.9	6.1
453	9359	5069	1545	877	177	189	217	238	4.4	5.0	5.8	5.9

Table III. Flory-Huggins Parameters X of Probes on Polystyrene

	×						
T (K)	n-C6	n-C7	n-C9	n-C ₁₀			
433	1.8972	1.7206	1.8132	1.9154			
443	1.3709	1.5303	1.5574	1.9154			
453	1.3586	1.4887	1.6589	2.1382			

Table IV. Weight Fraction Activity Coefficients $(a_1/w_1)^{\infty}$ of Probes on Polystyrene

T (K)	n-C6	n-C7	n-C9	n-C ₁₀
433	2923	2899	2826	3028
443	2526	2799	2669	2999
453	2571	2825	2823	3271

Chromatography

The gas chromatography used was a Packard 436 with a flame ionization detector. The retention times were measured with a Shimadzu integrator. Methane was used as the internal marker and nitrogen as the carrier gas. The carrier gas flow rate was measured by a soap-bubble flow meter. Probe injections were done with a 1 μ L Hamilton syringe. Pressures at inlet and outlet of the column, read from a mercury manometer, were used to compute corrected retention volumes.

RESULTS AND DISCUSSION

Specific retention volumes (above T_g) as a function of temperature for four probes on polystyrene were measured. The values are shown in Table 1.

As can be seen from Table 1, the specific retention volumes of probes on polystyrene are temperature dependent and decrease with the increasing of temperature for each probe. Similar results had been obtained for the other (polymer-probe) systems 2,3 .

The probe parameters including the vapor pressures P_1^0 , the molar volume V_1 and solubility parameters δ_1 at different temperatures were not found in the literature sources over the temperature range of 433-453 K, so the values of P_1^0 and δ_1 for each probe were computed from the equations 4 and 5 respectively. The molar volumes V_1 of probes at different temperatures (Table II) were computed with the help of some constants taken from literature sources^{4,5}.

Flory-Huggins X parameters calculated as a function of temperature for each probe from the equation 2 are tabulated in Table III.

Flory-Huggins X parameter characterizes the interactions between the chain segments of probe and the chain segments of polymer. A consequence from theoretical considerations is that X has to be smaller than 0.5 for the solvents and larger than 0.5 for the nonsolvents of polymer⁶. X values which we have obtained are in good agreement with this theoretical considerations.

Weight fraction activity coefficients $(a_1/w_1)^{\infty}$ at infinite dilution for each probe were determined as a function of temperature by using the specific retention volumes and probe parameters over the temperature range 433-453 K Table IV. shows the results.

T (K)	n-C ₆	n-C7	n-Cg	n-C ₁₀
433	2923.71	2899.23	2826.27	3028.43
443	2526.81	2799.50	2669.23	2999.65
453	2571.31	2827.59	2823.15	3271.59

Table V. The Partial Molar Free Energies of Probes of Polystyrene.

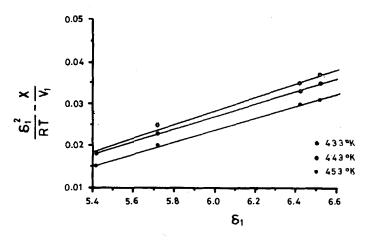


Figure 1. Estimation of the Solubility Parameter δ_2 of Polystyrene from Flory-Huggins X Parameters

The weight fraction activity coefficient $(a_1/w_1)^{\infty}$ at infinite dilution may be regarded as a measure of the interaction between the polymer and probes. Table IV shows that the values of $(a_1/w_1)^{\infty}$ decrease with increasing temperature for all probes. This means that the solubility of probes in the polymer increases with the increasing temperature⁷.

According to the values of $(a_1/w_1)^{\infty}$, the following rules for (polymer-solvent) system have been formulated by Guillet⁸,

Figure 11. Estimation of the Solubility Parameter δ_2 of Polystyrene from the Partial Molar Free Energy of mixing $\overline{aG_1}^{oo}$

Table VI. δ_2 Values of Polystyrene at Different Temperatures.

T(K)	δ ₂ fr	rom X	δ_2 from $\Delta G_1^{\circ \circ}$		
	Slope	Intercept	Slope	Intercept	
433	8.18	8.18	7.91	7.90	
443	7.63	7.62	7.20	7.20	
453	6.64	6.76	6.70	6.80	

 $(a_1/w_1)^{\infty} < 5$ for good solvents $5 < (a_1/w_1)^{\infty} < 10$ for moderate solvents and $(a_1/w_1)^{\infty} > 10$ for non-solvents

Table IV indicates that the values of $(a_1/w_1)^{\infty}$ are all of the magnitude expected for (polymer-nonsolvent) systems.

The solubility parameter δ_2 for polystyrene was evaluated from the equations 7 and 9 over the temperature range of 433-453 K. To

eliminate the solubility parameter δ_2 from equation 10, the partial molar free energies $\overline{\Delta G_1}^{\infty}$ of probes on polystyrene at infinite dilution were calculated by using equation 9. These values are shown in Table V.

Using the solubility parameters δ_1 of probes at the same temperature from Table II, values of δ_2 for the polystyrene were obtained from the slopes and intercepts of the plots of $(\delta_1^2/RT-x/v_1)$ againts δ_1 (Fig. i) and $(\delta_1^2 - a \delta_1^{\circ \circ} / v_1)$ againts δ_1 (Fig.II). The values are shown in Table VI.

It is seen that solubility parameters obtained from the slopes and intercepts of plots are in good agreement with each other. These values seem to be most convenient with the δ_2 values obtained by DiPaola Baranyi and Guillet⁹.

In comparing the δ_1 and δ_2 values of probes and polymer at different temperatures it was seen that both δ_1 and δ_2 solubility parameters decreased with increasing temperature.

CONCLUSIONS

Using the inverse gas chromatography technique, we have obtained Flory-Huggins X parameters and weight fraction activity coefficients $(a_1/w_1)^{\infty}$ for polystyrene-probes systems and also solubility parameter

 δ_2 of polystyrene. The results are in good agreement with the literature

data. Our experience with this apparatus indicates that it can be used to estimate thermodynamic parameters of (polymer-probe) systems.

REFERENCES

- 1. Smidsrod, O. and Guillet, J.E., Mecromolecules 1969. 2. 274
- Braun, J.M., Cutajar, M., Guillet, J.E., Schreiber, H.P., and Patterson, D., Macromolecules 1977, 10, 864.
- 3. Ward, T.C., Sheehy, D.P., Riffle, J.S., and McGrath, J.E. Macromolecules 1981. 14. 1791.
- 4. Weest, "Hendbook of Chemistry and Physics" 53 rd ed., CRC press, Chevelend, Ohio, 1972.
- 5. Hala, E., Boiblik, T., Wichterle, I., and Polak, J., "Yapour-Liquid Equilibrium Deta at Normal Pressures", 1 st ed., Pergamon Press, Oxford, 1968.
- 6. Typi, O.S., Sajjad, S.M., and Husain, S., Polymer, 1987, 28. 2329.
- Fernendez-Berridi, M.J., Guzmen, G.M., Irvin, J.J., and Elorza, J.M., Polym. Bull. 1985. 13, 463.
- Guillet, J.E. in Purnell "Advances in Analytical Chemistry and Instrumentation Gas Chromatography", New York, 1973. 11. p. 187.
- DiPaola-Baranyi, G. and Guillet, J.E., Macromolecules, 1978. 11. 228.